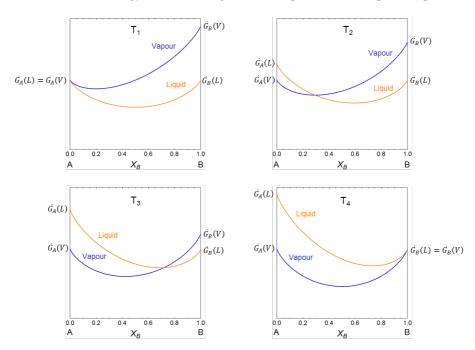
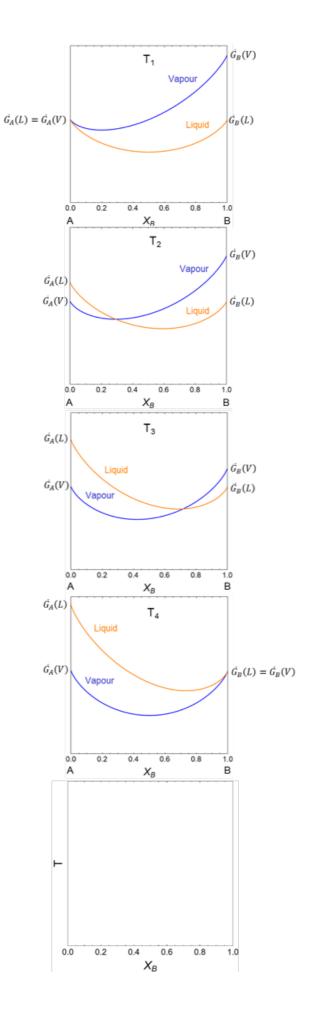
## Homework 9


## Exercise 1

Gold (15g) and Silver (25g) are mixed to form a single-phase ideal solid solution. The molar masses of gold and silver are 197 g/mol and 108 g/mol, respectively. R=8.314 J/mol K and Avogadro's number  $N_A=6.02*10^{23}$  mol<sup>-1</sup>.


- a) How many moles of solution are there?
- b) What are the mole fractions of Gold and Silver?
- c) What is the molar entropy of mixing?
- d) What is the total entropy of mixing?
- e) What is the molar free energy change at 500°C?
- f) What are the chemical potentials of Gold and Silver at 500°C, assuming free energies of pure Gold and Silver are zero?
- g) How much will the free energy of the solution change at 500°C if one Gold atom is added?

## Exercise 2

Imagine an ideal binary mixture at different temperatures ( $T_1$ ,  $T_2$ ,  $T_3$  and  $T_4$  of an increasing order). The respective molar Gibbs free energy G vs.  $X_B$  diagrams for liquid (L) and vapor (V) phases are given as:



- a) Given the information, draw a phase diagram (T vs X<sub>B</sub>) and label all temperature and composition points (You can use next page's sketch to draw your phase diagram)
- b) Apply the phase rule for the diagram you draw in (a) to find the degrees of freedom for each phase.
- c) Imagine you have a liquid mixture with a composition of  $X_B = 0.7$ . Practically, how would you obtain a liquid mixture with a composition  $X_B < 0.1$ ? That is, explain one route to decrease the composition of B in the mixture.

